Low-Rank Approximation and Regression in Input Sparsity Time

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-Rank PSD Approximation in Input-Sparsity Time

We give algorithms for approximation by low-rank positive semidefinite (PSD) matrices. For symmetric input matrix A ∈ Rn×n, target rank k, and error parameter ε > 0, one algorithm finds with constant probability a PSD matrix Ỹ of rank k such that ‖A− Ỹ ‖2F ≤ (1+ε)‖A−Ak,+‖ 2 F , where Ak,+ denotes the best rank-k PSD approximation to A, and the norm is Frobenius. The algorithm takes time O(nnz(A...

متن کامل

Is Input Sparsity Time Possible for Kernel Low-Rank Approximation?

Low-rank approximation is a common tool used to accelerate kernel methods: the n × n kernel matrix K is approximated via a rank-k matrix K̃ which can be stored in much less space and processed more quickly. In this work we study the limits of computationally efficient lowrank kernel approximation. We show that for a broad class of kernels, including the popular Gaussian and polynomial kernels, c...

متن کامل

Input Sparsity Time Low-rank Approximation via Ridge Leverage Score Sampling

Often used as importance sampling probabilities, leverage scores have become indispensable in randomized algorithms for linear algebra, optimization, graph theory, and machine learning. A major body of work seeks to adapt these scores to low-rank approximation problems. However, existing “low-rank leverage scores” can be difficult to compute, often work for just a single application, and are se...

متن کامل

An Efficient, Sparsity-Preserving, Online Algorithm for Low-Rank Approximation

Low-rank matrix approximation is a fundamental tool in data analysis for processing large datasets, reducing noise, and finding important signals. In this work, we present a novel truncated LU factorization called Spectrum-Revealing LU (SRLU) for effective low-rank matrix approximation, and develop a fast algorithm to compute an SRLU factorization. We provide both matrix and singular value appr...

متن کامل

Low Rank Matrix Approximation in Linear Time

Given a matrix M with n rows and d columns, and fixed k and ε, we present an algorithm that in linear time (i.e., O(N)) computes a k-rank matrix B with approximation error ‖M−B‖2F ≤ (1+ ε)μopt(M, k), where N = nd is the input size, and μopt(M, k) is the minimum error of a k-rank approximation to M. This algorithm succeeds with constant probability, and to our knowledge it is the first linear-ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the ACM

سال: 2017

ISSN: 0004-5411,1557-735X

DOI: 10.1145/3019134